پیش بینی نرخ نفوذ مته به کمک شبکه‌های عصبی و بررسی تاثیر وزن دهی پارامترهای ورودی به کمک فرآیند تحلیل سلسله مراتبی فازی برای یکی از میادین غرب ایران

نویسندگان

  • پرهام پهلوانی دانشکده مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنی دانشگاه تهران
چکیده مقاله:

تعیین نرخ نفوذ مته یکی از موارد پر اهمیت در صنعت حفاری می‌باشد. عموما، دو روش برای مدل‌سازی نرخ نفوذ مته وجود دارد که عبارتند از مدل‌های فیزیکی و مدل‌های مبتنی بر شبکه‌های عصبی. کارایی مدل‌های فیزیکی با توجه به نقاط ضعفی مانند استفاده از ضرایب تجربی، نیاز به داده‌های جانبی زیاد، مورد تردید می‌باشد. از سوی دیگر، شبکه‌های عصبی می‌توانند با توجه به محدودیت داده‌های در درسترس، ابزاری مناسب جهت پیش‌بینی نرخ نفوذ مته ‌باشند. در این مقاله نرخ نفوذ مته به کمک حدود 2000 روز داده‌های حفاری، با استفاده از شبکه‌های عصبی پرسپترون چند لایه و المان مدلسازی شد. در هردوشبکه‌ی مذکور تعداد 7 نرون به عنوان نرون بهینه در تنها لایه‌ی پنهان تعیین شد که نتایج نشانگر میزان همبستگی 1/77%، 7/76% و میانگین مربعات خطای 31/1، 33/1 به ترتیب در شبکه‌ی پرسپترون چندلایه و شبکه‌ی المان بود. سپس، به منظور ارتقاء نتایج هردو شبکه‌ی عصبی، پارامترهای ورودی به کمک نظرات کارشناسان و با استفاده از رویه‌ی تحلیل سلسله مراتبی وزن دهی شد و مجددا مدلسازی نرخ نفوذ صورت گرفت که باعث بهبود نتایج هردو شبکه‌ی عصبی شد. نتایج حاصل از این پژوهش نشانگر برتری شبکه‌ی پرسپترون چندلایه جهت تخمین نرخ حفاری می‌باشد که موید این واقعیت است که شبکه‌های عصبی با دقت مناسبی قابلیت پیش بینی نرخ نفوذ مته را بر اساس داده‌های در دسترس دارند

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارزیابی تناسب اراضی به روش‌های فازی شبیه‌سازی و فرآیند تحلیل سلسله مراتبی فازی برای گندم آبی

انتخاب روش مناسب  برای تعیین تناسب اراضی برای تعیین کلاس­ها و تحت کلاس­های تناسب اراضی تحت کشت گندم امری ضروری است. هدف از این تحقیق تعیین اثر کمی خصوصیات اراضی بر تولید گندم آبی با استفاده از منطق فازی شبیه سازی و فرآیند تحلیل سلسله مراتبی فازی است. این تحقیق در جنوب غرب ایران، دشت عقیلی شهرستان گتوند از استان خوزستان انجام گردید. روش تحقیق با استفاده از مقایسه عملکرد گندم آبی با شاخص­های بدست...

متن کامل

پیش بینی زبری سطح در تراش کاری خشک به کمک شبکه های فازی- عصبی تطبیقی

Optimization of machining parameters is very important and the main goal in every machining process. Surface finishing prediction is a pre-requirement to establish a center for automatic machining operations. In this research, a neuro-fuzzy approach is used in order to model and predict the surface roughness in dry turning. This approach has both the learning capability of neural network and li...

متن کامل

پیش بینی زبری سطح در تراش کاری خشک به کمک شبکه های فازی- عصبی تطبیقی

پیش بینی زبری سطح یک پیش نیاز اساسی برای ایجاد یک مرکز ماشین کاری خودکار می باشد. بهینه سازی فرآیند ماشین کاری در این راستا از اهمیت خاصی برخوردار است. در این مقاله از رهیافت ترکیبی فازی- عصبی (سیستم استنتاج فازی- عصبی تطبیقی ANFIS) به منظور پیش بینی زبری سطح در تراش کاری خشک استفاده شده است. به طوری که داده های حاصل از آزمایش ها به منظور ایجاد قواعد فازی و ویرایش این قواعد به کمک شبکه های عصبی...

متن کامل

شناسایی و پیش بینی سیستم غیرخطی کوره دوار سیمان با استفاده از شبکه عصبی - فازی و انتخاب ورودی ها به کمک الگوریتم ژنتیک

با توجه به اهمیت کوره دوار سیمان در صنعت و عدم وجود یک مدل قابل قبول برای آن، شناسایی و پیش بینی وضعیت کوره از ملزومات شبیه سازی و اتوماسیون سیستم کوره دوار سیمان می باشد. کوره دوار سیمان یک سیستم غیرخطی و متغیر با زمان می باشد. در این نوشتار به منظور شناسایی و پیش بینی وضعیت کوره دوار سیمان از شبکه عصبی- فازی تطبیقی ANFIS استفاده شده است. از آنجا که داده های استخراج شده مرتبط با سیست...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 2

صفحات  18- 37

تاریخ انتشار 2019-06-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023